PulseTRAK™ Solving the Lidar Multipulse Challenge Innovative new lidar technology significantly increases collection efficiency and data quality

Michael Sitar M.E.S., B.Sc. Business Manager Airborne Mapping Solutions

Geospatial Forum 2015, Mexico City

Sistemas Integrados de Lidar y Cámaras

Acerca de Optech

"De las profundidades del oceano hasta la superficie de Marte" Dr. Allan I. Carswell* Fundador & Chairman de Optech

Una compania global que disena, fabrica, integra, desarrolla, y da soporte a sistemas sofisticados de sensores activos y pasivos que operan en tierra, agua, en el aire y en el espacio

Presentation Summary

- Pulse Principles
 - TOF versus SNR
- Blind Zones
 - Impacts to blind zone thickness (beams, scanner types, scan angle, hardware variations, atmospherics)

- A Multipulse Replacement
 - PulseTRAK[™] development objectives
 - Zero blind zones
 - Swath Tracker mode
 - PulseTRAK[™] planning example
- Conclusions

- Multipulse Technologies
 - FMP, MPiA versus CMP, MTA
 - Impacts to data density and efficiency of collection

Pulse Principles: Signal Measurement

Output signal recorded and timed, then signal return detected *prior* to next pulse emitted. Time-of-flight limited.

Output signal recorded and timed, then signal return detected <u>after</u> next pulse emitted. Now signal-to-noise limited.

© Copyright 2015, Optech. All rights reserved. E&OE.

Pulse Principles: Multipulse

 "Multipulse" is the ability to track, identify and measure more than one emitted laser pulse in the air

Image courtesy of Leica GeoSystems

A History of Multipulse: Decade 1

- Decade 1 (1995-2004) <u>Constrained by single pulse TOF</u>
 - ALTM 3033
 - 3000 m = 20 µs < 33 kHz
 - ALTM 2050 (higher PRF, lower altitude)
 - 2000 m = 13.3 µs < 50 kHz
 - ALTM 3070 (higher PRF OR higher altitude)
 - Included new TIM design
 - ALTM 3100
 - Not just Optech...the entire industry was assuming this phantom constraint
 - ALTM Gemini
 - Included new TIM to remove single pulse TOF constraint

A History of Multipulse: Decade 2

- Decade 2 (2006-2014) <u>Constrained by Blind Zones</u> (time interval shortly before and after laser firing)
 - Again- Not just Optech the entire industry was observing this phantom constraint.
 - Optech developed Fixed and Continuous Multipulse technology (CMP[™])
 - Leica developed MPiA
 - Riegl developed MTA and PRF "modulation"
- Decade 3 (2015-) –<u>Blind Zone constraint removed</u>
 - Optech releases Galaxy with PulseTRAK[™]

Pulse Principles: Blind Zones

If fly too close to altitude zone that corresponds to T_0 (n+1), then confusion regarding outgoing pulse vs. return pulse (blind zone)

#] Aircreft Profile Plot	
3200	
2100	
1100	
434	User Attitude (m) Eye Safe Limit (m) Sensor Limit (m) Bind Zone(m)

© Copyright 2015, Optech. All rights reserved. E&OE.

Blind Zones: Altitude versus Thickness

Blind zone thickness increases with altitude

Operational envelope decreases with increasing altitude and PRF

Blind Zones: Zones versus Scanner Types

Polygon scanners have 33% more blind zones to navigate, compared to galvometric scanners

- A consequence of having to use a higher advertised (emission) PRF to achieve an effective (ground) PRF for equivalent density
- Increased number of blind zone "scars" in the terrain model, relative to galvometric scanners

Pulse Principles: Atmospherics (Single Pulse)

Location of atmospheric returns relative to outgoing *single-pulse*.

Pulse Principles: Atmospherics (Multipulse)

Location of atmospheric returns relative to outgoing *multi-pulse*.

© Copyright 2015, Optech. All rights reserved. E&OE.

Pulse Principles: Atmospherics (Multipulse)

Impact of atmospherics on ground data relative to outgoing *multi-pulse*.

- Blind Zone thickness is often a function of additional range gate to exclude near-field returns (atmospherics)
- Atmospherics can have a significant impact on data quality and necessary postprocessing filtering
- Manufacturers will adjust the size of the blind zone based on sensor susceptibility to atmospherics

Multipulse Solutions

Blind zones are problematic when trying to collect data in high relief environments, or when flying at high altitudes with high PRF

Data gaps will occur when the terrain crosses a blind zone

Manufacturers have developed several methods to try and overcome this blind zone constraint:

Optech CMP (October, 2006)

- Solves for blind zone data gaps (now referred to as a pulse transition zone)
- Does <u>not</u> maintain planned density in the transition zone (~90%)
- In-air implementation does not impact post-processing times or in-air visualization

Leica MPiA (December, 2006)

- Does <u>not</u> solve for blind zone data gaps
- Must plan around the MPiA blind zones (prevents use of high PRF in high relief environments)

Riegl MTA (January 2012)

- Solves for MTA transition zone data gaps
- Does <u>not</u> maintain planned point density in the MTA transition zone (~50%)
- Smaller transition zones than CMP
- Post-processing solution required

Multipulse Replacement: PulseTRAK™

PulseTRAK[™] was designed to remove the stigma of multipulse and provide wholly consistent point data throughout the complete sensor operating range

Development Objectives:

- Maintain complete coverage across multipulse transition/blind zones
- Maintain consistent point density across zones
- Eliminate the impact of atmospherics in ground model results
- Provide complete collection freedom across all terrain types
- Not impact post-processing times
- Be able to observe coverages in realtime
- Simplify mission planning

© Copyright 2015, Optech. All rights reserved. E&OE.

GALAXY[™]

With PulseTRAK[™] technology — No more compromises!

TMOCOC

PulseTRAK[™] = Seamless Operating Envelope

ed splat

3898 m

PulseTRAK[™]: Collection Example

PulseTRAK[™]: Collection Example

.....

......

No point density loss across PIA transition zones!

SwathTRAK™: Leveraging PulseTRAK™ Advantage

An industry exclusive! Dynamic FOV maintains fixed swath over ground in complex terrain

Benefits:

- Maintain XY point distribution, even in variable terrain conditions
- Maintain same point density, on peaks and valleys
- Produce constant-width flight lines, with less sidelap requirement
- Reduce number of flight lines and increase area coverage rates
- Simultaneously solve for platform roll effects

SwathTRAK = **OFF**

SwathTRAK = ON

SwathTRAK[™] = EFFICIENCY

COLLECTION PARAMETERS ADVANTAGES: 400 kHz (effective) Same point density in valleys and peaks 600 m terrain relief No PIA data gaps 3 PIA on ground; 5 PIA in air **Fewer flight lines Faster ROI**

SwathTRAK = Fixed swath width over variable terrain!

SwathTRAK: Planning Example

- Swath Tracker mode = OFF
- 22 lines
- 4:30:00 = 270 mins

- Swath Tracker mode = ON
- 15 lines
- 03:11:00 = 191 mins

~30% more efficient than fixed FOV

PulseTRAK and SwathTRAK Conclusions

A significant technology advancement for airborne laser scanning that:

- Leverages higher pulse rates at higher altitudes
- Can produce high sample rate data across Multipulse transition zones with no density decrease
- Can provide more consistent point density in high-relief terrain, compared to fixed FOV sensors
- Can significantly increase ROI and area coverage rates in high-relief terrain, compared to fixed FOV sensors

© Copyright 2015, Optech. All rights reserved. E&OE.

Titan – Multispectral lidar point clouds

© Copyright 2015, Optech. All rights reserved. E&OE.

Titan – Applications

3D land cover classification:

Significantly improve land cover classification accuracies with 3D multispectral intensity analysis

Vegetation mapping:

Map vegetative differences for environmental, forestry and agricultural applications day or night, with high precision and accuracy

Titan – Applications

Shallow-water bathymetry:

Collect seamless data sets across the land-water interface with Titan's waterpenetrating green channel for clear shallow water bathymetry and surfacedetecting NIR channels

Dense topography:

Achieve extreme point density and consistent point distribution with Titan's 900 kHz pulse repetition frequency, 210 Hz scanner rate, and gyro-stabilized sensor configuration

Radiometric Correction - 1550 nm

Corrected Intensity image from Channel 1 (1550 nm)

Soil is reflective in intermediate IR

Radiometric Correction - 1064 nm

Corrected Intensity image from Channel 2 (1064 nm)

Vegetation is strongly reflective of NIR

Radiometric Correction - 532 nm

Corrected Intensity image from Channel 3 (532 nm)

Vegetation is poorly reflected in the green and appears darker

Natural Color Composite - Lidar intensity only

False Color Composite – 3D Land Classification

© Copyright 2015, Optech. All rights reserved. E&OE.