

#### **Big Data Earth Observation Processing**

Shawn Melamed Tech. Solution Specialist



### About PCI and Big Data

- In 2007, PCI Geomatics developed it's first high volume Earth Observation (EO) processing system called the GeoImaging Accelerator (GXL)
- The GXL was initially created as a customer solution to orthorectify SPOT-4/5 imagery for all of Canada, as part of the National Imagery Project (NIP) <u>http://www.pcigeomatics.com/pdf/case\_study\_NIP.pdf</u>



### About PCI and Big Data

- The National Imagery Project (NIP) was announced in 2007 (8 years ago)
- Over \$2.4 million dollars was invested in this project for data acquisition, processing and dissemination
- 11.5 million km<sup>2</sup> of SPOT-4/5 (10m PAN and 20m MS) data was processed
- The data is freely available to all Canadians and non-Canadians at www.geobase.ca

THE IT



### About PCI and Big Data

 Since the NIP project in 2007, PCI Geomatics has successfully delivered dozens of GXL systems worldwide







COMISIÓN NACIONAL PARA EL CONOCIMIENTO Y USO DE LA BIODIVERSIDAD





#### Earth Observation by the Numbers



### EO Market by the Numbers

- In the last 10 years 179 civil and commercial EO satellites >50kg have been launched<sup>2</sup>
- Top nations by number of EO satellites include: China 25.5%, USA 23.5%, India 7.29%, Germany 4.69% and Russia 3.65%<sup>1</sup>
- It is expected that over 400 more satellites will be launched in the next 10 years (not including micro satellites)<sup>2</sup>



### EO Market by the Numbers

- In 2024 the market for commercial EO data is expected to reach \$3.5 billion<sup>2</sup>
- Largest growth markets, expected to be Asia, Latin America and Africa<sup>2</sup>
- Major applications: Natural resource management, infrastructure and defense<sup>2</sup>

10 10

1 Pixalytics - http://www.pixalytics.com/how-many-eo-space/

2 Euroconsult - http://www.euroconsult-ec.com/shop/earth-observation/74-satellite-based-earth-observation-market-prospects-to-2024.html



### EO Market by the Numbers

- This means there will be many Exabytes (1024 Petabytes) of data
- This will require specially designed systems and algorithms
  to convert EO data to EO information





#### Fun Fact

What is the oldest EO satellite currently in operation?

Hint: It was expected to be operational for 1 year!

Hint: It has been operational for over 22 years and counting

Answer: The Brazilian made Satélite de Coleta de Dados (SCD-1)

510 PT



#### Fun Fact

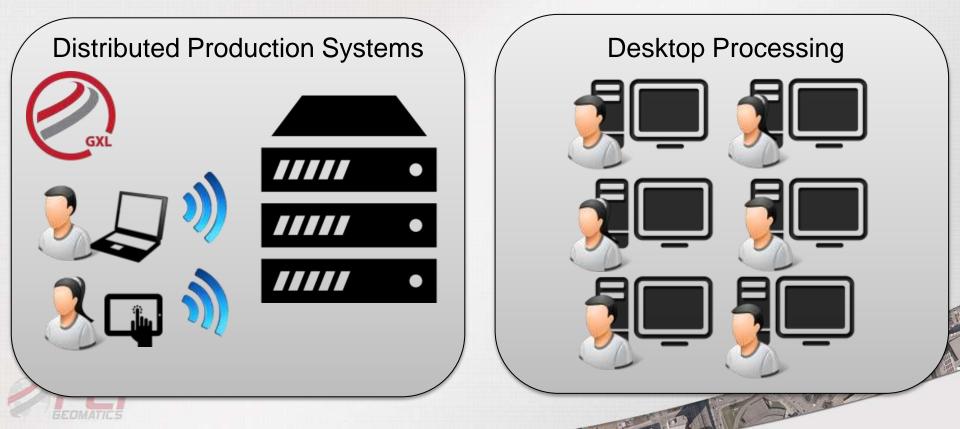
What can we deduce from this?

# The world needs Latin America to build more EO satellites





**Big Data Processing Systems** 




#### What is the GXL?

#### A high volume photogrammetric & mosaicking production system – Geolmaging Accelerator



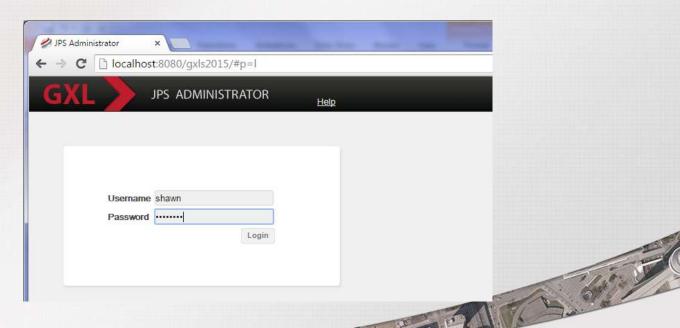
### **Designed for Limited Operators**



#### Ease of Use – Web Portal

**Open Configuration** – Access the GXL from any computer on the web




#### Ease of Use – Web Portal

Secure Configuration – Access the GXL from any computer on your local network



#### Ease of Use – Web Portal

- Securely access the GXL from any computer, tablet or phone on the GXL's network
- Multiple User Access





#### Ease of Use – Monitor & Manage Batch Projects

| G     |          |                  | IINISTRATC | kmj=true&uj=true<br>R <u>Create Job</u> <u>Jobs</u> | Processing Serve                                         | ers <u>Mainte</u> | nance <u>A</u> | dministration                 | Footprint |
|-------|----------|------------------|------------|-----------------------------------------------------|----------------------------------------------------------|-------------------|----------------|-------------------------------|-----------|
| Jobs  | 5        |                  |            |                                                     |                                                          |                   |                |                               |           |
| Ma Ma | ister 🗹  | User Search: All |            | •                                                   | P                                                        |                   |                |                               |           |
| ▼ ID  | Children | State            | Elapsed    | Status                                              | User Comment                                             | User              | Priority       | Title                         | Server    |
| 3536  | 1        | Waiting          | 00:00:17   | Waiting for DSM & DTM Creation                      | Project Code:<br>00545<br>(Melbourne 2012<br>- Pleiades) | sma               | 50.0           | DEM<br>Extraction             | EOS       |
| 3496  | 3        | Completed        | 00:46:54   | 3 child jobs completed successfully                 | Project Code:<br>27235 (Quebec<br>2014)                  | sma               | 50.0           | DEM<br>Extraction<br>Airphoto | EOS       |
| 3463  | 29       | Completed        | 00:00:42   | 29 child jobs completed successfully                | Project Code:<br>27235 (Quebec<br>2014)                  | sma               | 50.0           | Airphoto<br>Ingest            | EOS       |
| 3446  | 3        | Completed        | 00:17:29   | 3 child jobs completed successfully                 | Project Code:<br>10210 (Graz<br>2013)                    | sma               | 50.0           | DEM<br>Extraction<br>Airphoto | EOS       |
| 3420  | 25       | Completed        | 00:00:24   | 25 child jobs completed                             | Project Code:<br>10210 (Graz                             | sma               | 50.0           | Airphoto                      | EOS       |

Simple table to track and access all batch processing projects (jobs)

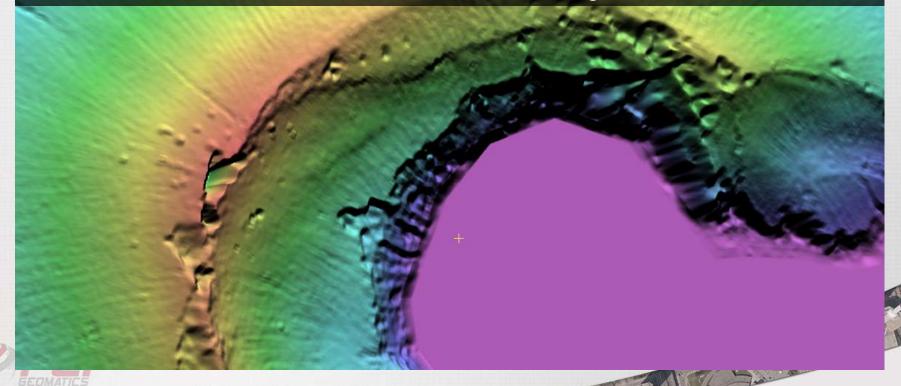




**Big Data Processing Algorithms & Tools** 

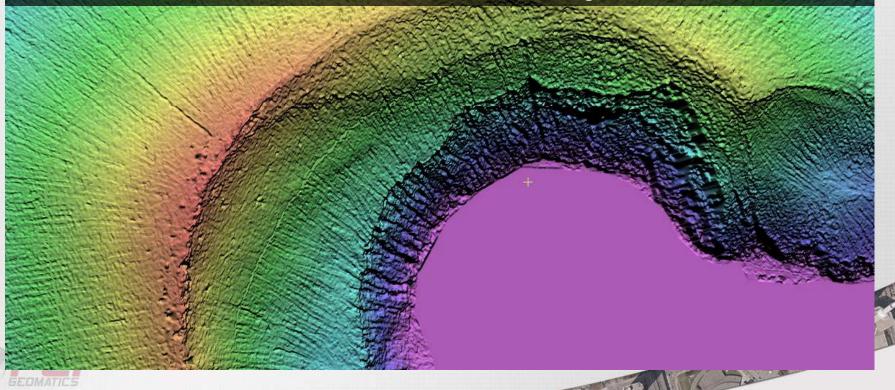


#### High Performance DEM Extraction


| Source                         | Original | Current | Improvement |
|--------------------------------|----------|---------|-------------|
| UltraCam airphoto              | 160s     | 40s     | 4x          |
| WorldView 2 (hi-res satellite) | 35m      | 11m     | Зx          |

- DEM extraction specifically improved (epipolar generation and geocoding unchanged)
- With all steps included total times are 1.5x to 2x faster

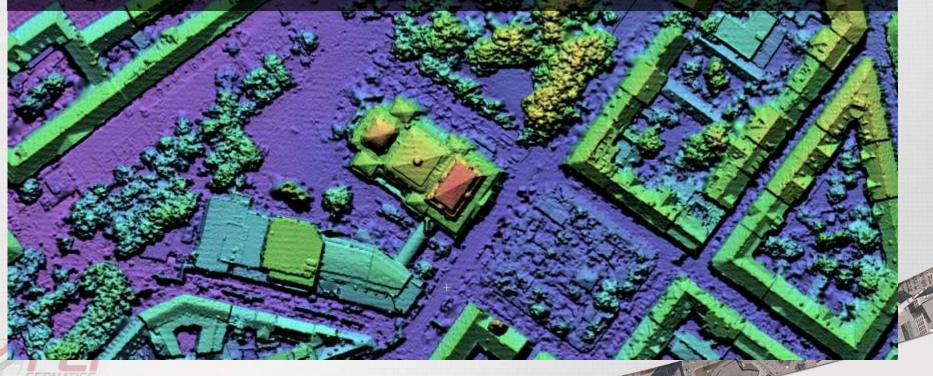



#### **DEM Extraction - Quality**

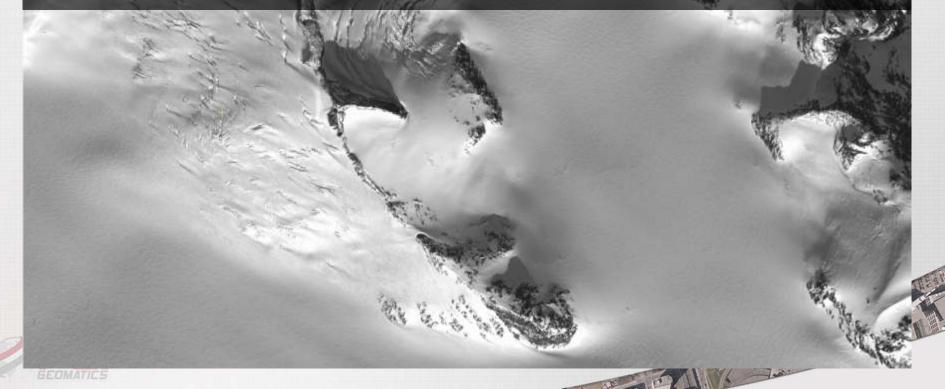
#### WV-3 DEM – Extracted with old algorithm



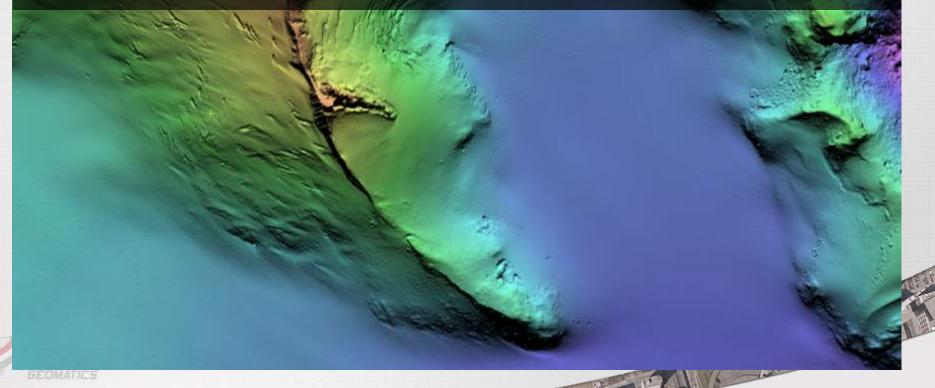
#### **DEM Extraction – Quality**


WV-3 DEM – Extracted with new algorithm

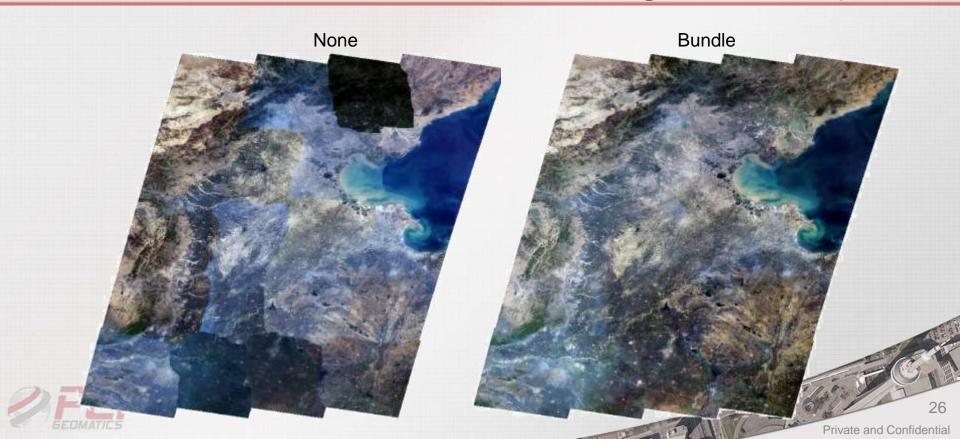



#### UltraCam 7.5cm ortho-image of Graz, Austria




#### UltraCam 30cm DSM of Graz, Austria




#### WV-2 50cm ortho-image of Greenland



#### WV-2 2m DTM of Greenland



#### Automatic Mosaicking Quality



#### **Traditional Colour Balancing Algorithms**

Traditional Method uses a single set of coefficients to define the brightness and contrast of each colour band

| Image 1          | Image 2 | Ima <b>g</b> e 3 |
|------------------|---------|------------------|
| Ima <b>s</b> e 4 | Image 5 | Image 6          |



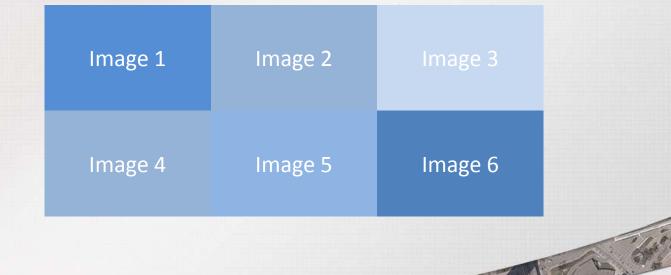
 Calculation and use of band specific gain and bias coefficients for color balancing

#### **Traditional Colour Balancing Algorithms**

Traditional method is more likely to create checkerboard effect

| Image 1 | Image 2 | Image 3 |
|---------|---------|---------|
| Image 4 | Image 5 | Image 6 |



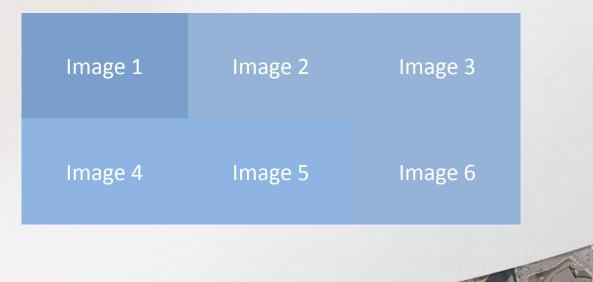

- New colour balancing algorithm is called 'Bundle'
- It consists of 2 primary steps to balance a set of images for mosaicking

SE P

- 1. Coarse Balancing
- 2. Local Balancing (edges)



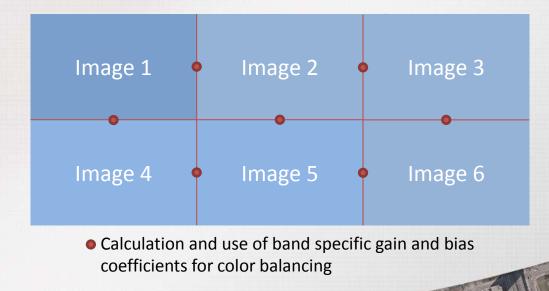
 The Coarse balancing step is a global operation and performs an initial balance on the entire image based on all images in the mosaic




SE -



30


- This improves the balancing of the images for the final step (local balance)
- The **global mean** and **sigma** are preserved to ensure the natural appearance of the images is retained



12 17

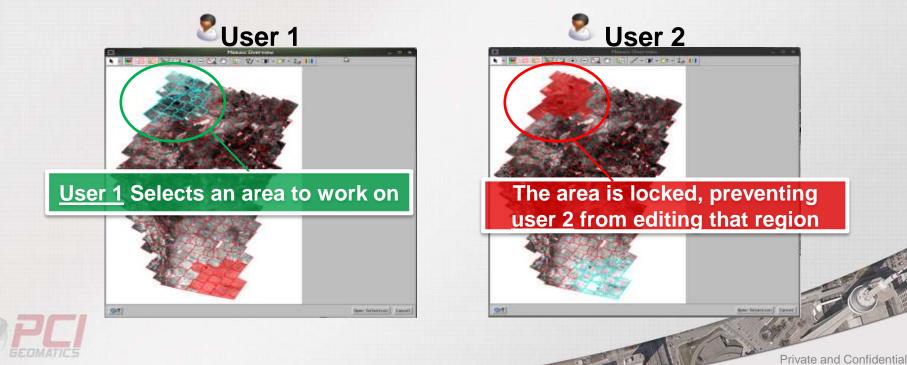


- The final step uses the coarse balancing results and further refines the colours along the edges only
- A set of coefficients is created for each overlap region and then blended





- Only pixels along the edges are further adjusted and then blended into the rest of the mosaic
- This improves the balancing and image fidelity






33

#### Interactive Tools – Mosaic Tool

Multiple users on separate machines can quality check and edit different regions of the same mosaic at the same time



#### **Efficient Editing Tools**

Multiple users on separate machines can quality check and edit different regions of the same mosaic at the same time





**Big Data Processing Architectures** 



#### **Performance – Metrics**

#### **GXL-Satellite**

Ingest  $\rightarrow$  GCP Collection  $\rightarrow$  Bundle Adjustment  $\rightarrow$  Pansharp  $\rightarrow$  Ortho  $\rightarrow$  Mosaicking

| Sensor: Output: |             | Area:                  |  |
|-----------------|-------------|------------------------|--|
| RapidEye*       | 840 GB/day  | 1 400 000 km²/day (5m) |  |
| WV-2 (4-node)   | 1200 GB/day | 256 000 km²/day (0.5m) |  |
| Ikonos (Cloud)  | 3 TB/day    | 600 000 km²/day (1.0m) |  |



\*Rapideye data cannot be pansharpened

#### **Performance – Metrics**

#### **GXL**-Aerial

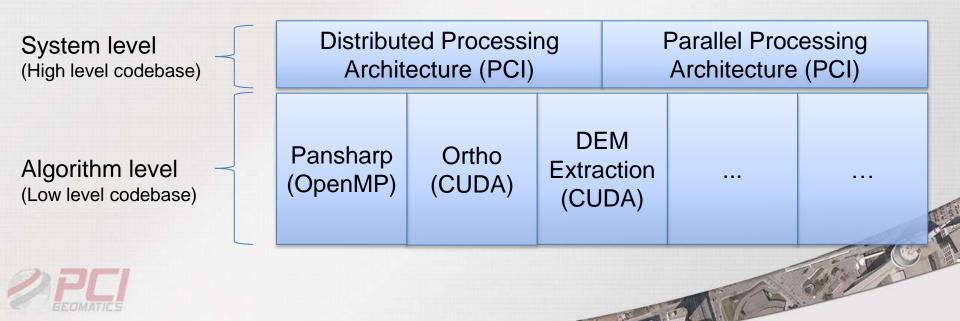
#### Ingest $\rightarrow$ DEM Extraction $\rightarrow$ Ortho $\rightarrow$ Mosaicking

| Ortho-Mosaic: | UltraCam X      | UltraCam Xp     |
|---------------|-----------------|-----------------|
| Project:      | 3300 Images     | 4500 Images     |
| Total Time:   | 17.5 Hours      | 52.5 Hours      |
| Output:       | 1.8 TB/day      | 1.1 TB/day      |
| Speed:        | 4500 Images/day | 2000 Images/day |

THE -



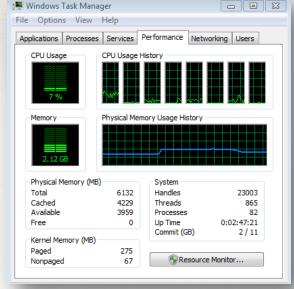
#### Performance – Method Overview

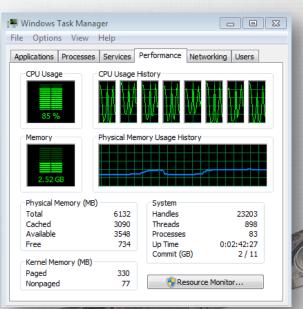

The GXL's industry leading throughput is a result of well thoughtout code implemented at both the algorithm and system levels

- Multi-threaded functions (Algorithm level)
- GPU Processing (Algorithm level)
- Parallel processing (System level)
- Distributed processing (System level)



#### Performance – Method Overview

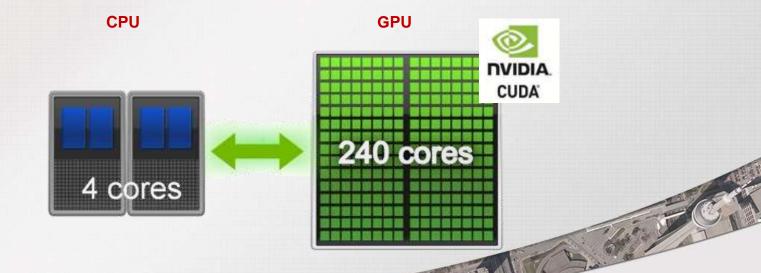

Strong emphasis on processing speed at all levels of code




#### Performance - Multi-Threaded Processing

# Many of the GXL algorithms are programmed using OpenMP standards to take advantage of modern multi-core CPUs










# Performance - GPU Processing

- A GPU contains hundreds of cores capable of performing hundreds of identical parallel processes on different chunks of data.
- GPU processing can significantly improve the net processing speeds of certain algorithms





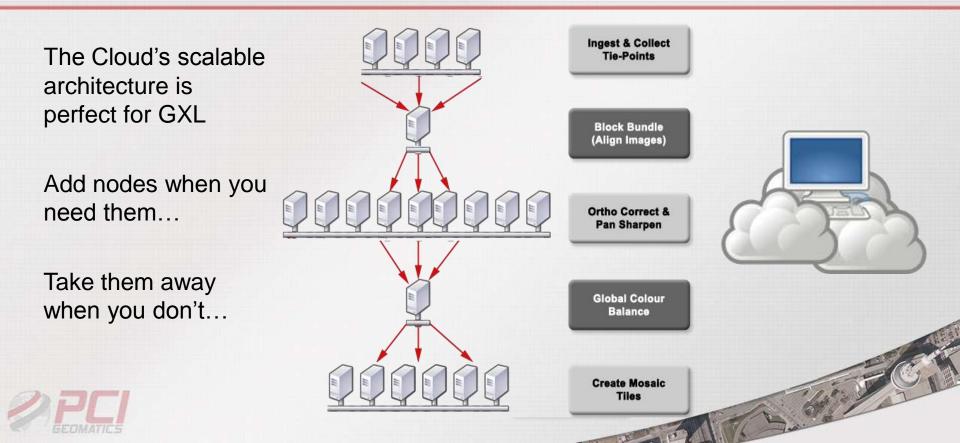
#### **Performance - Parallel Processing**

| Search:            | All      |         | •            |          | Q                                                  |                                 |      |          |                                             |        |
|--------------------|----------|---------|--------------|----------|----------------------------------------------------|---------------------------------|------|----------|---------------------------------------------|--------|
| ▼ ID               | Children | State   |              | Elapsed  | Status                                             | User Comment                    | User | Priority | Title                                       | Server |
| <mark>356</mark> 2 | 0        | Ready   |              |          | K3_20130506182405_05174                            | Data Ingest &<br>GCP Collection | sma  | 50.0     | & GCP<br>Collection<br>Child                |        |
| 3561               | 0        | Ready   |              |          | K3_20130506182405_05174                            | Data Ingest &<br>GCP Collection | sma  | 50.0     | Data Ingest<br>& GCP<br>Collection<br>Child |        |
|                    |          |         |              |          | Discontrations                                     | Data la sast 8                  |      |          | Data Ingest                                 |        |
| 3560               | 0        | Running | <del>\</del> | 00:00:03 | Pyramiding:<br>K3_20130506182405_05174             | Data Ingest &<br>GCP Collection | sma  | 50.0     | & GCP<br>Collection<br>Child                | EOS    |
| 3559               | 0        | Running | ~            | 00:00:03 | Pyramiding:<br>K3_20130501182829_0 <del>5181</del> | Data Ingest & GCP Collection    | sma  | 50.0     | Data Ingest<br>& GCP<br>Collection<br>Child | EOS    |
| 3558               | 0        | Running | K            | 00:00:03 | Pyramiding:<br>K3_20130501182829_05101             | Data Ingest &<br>GCP Collection | sma  | 50.0     | Data Ingest<br>& GCP<br>Collection<br>Child | EOS    |


3 jobs running in parallel

TE -



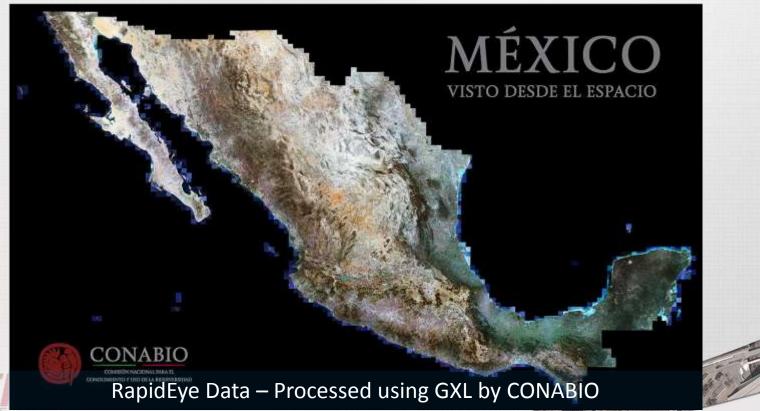

#### **Performance - Distributed Processing**

GXL Processes can be autonomously distributed among all active processing servers in the cluster





#### Performance – Cloud Processing






#### **Success Stories**



## Conabio's Mosaic of Mexico



Private and Confidential

## Conabio's Mosaic of Mexico

| Automatic<br>Mosaicking Mosaic Editing | Mosaic Polishing         |  |  |
|----------------------------------------|--------------------------|--|--|
| Component                              | Specification            |  |  |
| Sensor                                 | Rapideye                 |  |  |
| Input Images                           | 25,000                   |  |  |
| Images Used (Cloud free)               | 4,338                    |  |  |
| Image Resolution                       | 5m                       |  |  |
| Operator                               | 1                        |  |  |
| Coverage Area                          | 1,972,550km <sup>2</sup> |  |  |
| Disk Size                              | >1TB                     |  |  |

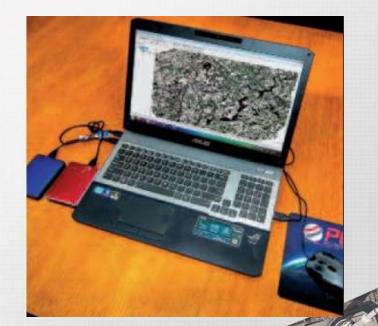


#### Esri's Ortho-Mosaic of the World



## Esri's Ortho-Mosaic of the World

| Bundle Adjustment | Orthorectification Automatic<br>Mosaicking | Mosaic Editing             |
|-------------------|--------------------------------------------|----------------------------|
|                   | Component                                  | Specification              |
|                   | Sensor                                     | Ikonos                     |
|                   | Input Images                               | >100,000                   |
|                   | Images Used (Cloud free)                   | >100,000                   |
|                   | Image Resolution                           | 1m                         |
|                   | Operator                                   | 3-4                        |
|                   | Coverage Area                              | >50,000,000km <sup>2</sup> |
| 701               | Disk Size                                  | N/A                        |
|                   |                                            |                            |


TE

#### Process over 4000 UltraCamX images in one weekend on a laptop with the GXL

| DSM Extraction | DEM Filtering | Orthorectification | Mosaicking |                                |
|----------------|---------------|--------------------|------------|--------------------------------|
|                |               |                    |            |                                |
|                |               |                    | 317.5      | 51<br>Private and Confidential |

# **Processing Computer Details**

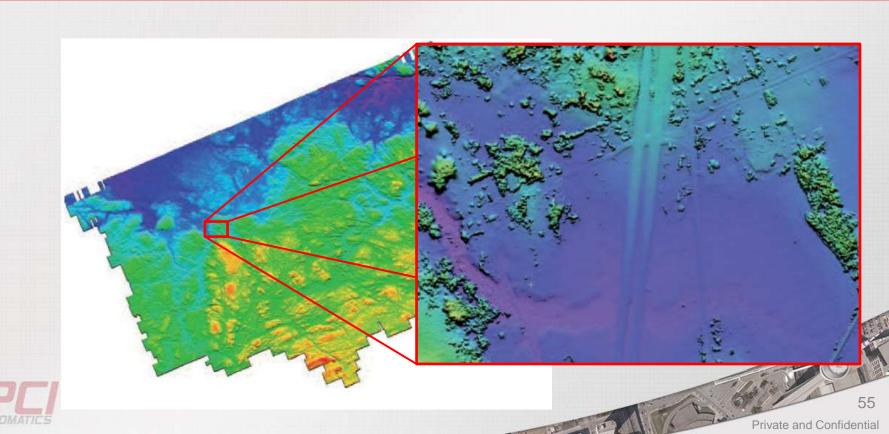
| Components             | Specification          |
|------------------------|------------------------|
| Laptop                 | ASUS G75V              |
| CPU                    | Intel 3610QM (4 cores) |
| GPU                    | Nvidia 670M            |
| RAM                    | 24GB                   |
| Internal Disk          | 256GB SSD + 480GB SSD  |
| External USB 3.0 Disks | 2x 2TB                 |
| Software               | GXL 2014               |





52

| Component                       | Specification             |
|---------------------------------|---------------------------|
| Camera                          | UltraCamX Large<br>Format |
| Image Size                      | 14430 x 9420 pixels       |
| Image<br>Characteristics        | 8 bit, 3 band TIF Format  |
| Ground Sample<br>Distance (GSD) | 20cm                      |
| Overlap                         | 70/30                     |
|                                 |                           |


Private and Confidential

| Processing Step                                            | Output Disk Size    | Processing Time |
|------------------------------------------------------------|---------------------|-----------------|
| Data Ingest                                                | <20GB               | 14m 12s         |
| DSM Extraction                                             | 63GB                | 29h 51m 45s     |
| DSM to DTM                                                 | 50GB                | 3h 20m 58s      |
| Orthorectification                                         | 460GB (cropped 30%) | 9h 59m 16s      |
| Color Balancing & Cutline Generation                       | <20GB               | 1h 53m 24s      |
| Mosaic Tile Generation<br>(172 5km x 5km tiles @ 20cm GSD) | 269GB               | 7h 19m 24s      |
| Totals                                                     | 1242GB              | 52h 38m 20s     |
|                                                            |                     |                 |

10 11



54







56



#### **Contact PCI Geomatics**



www.pcigeomatics.com info@pcigeomatics.com



it is

